ANATOMY OF THE VISUAL CORTEX A large part of the cerebral cortex on the right side has been exposed under local anesthesia for the neurosurgical treatment of seizures in this fully conscious human patient. The surgeon was Dr. William Feindel at the Montreal Neurological Institute. The scalp has been opened and retracted and a large piece of skull removed. (It is replaced at the end of the operation.) You can see gyri and sulci, and the large purplish veins and smaller, red, less conspicuous arteries. The overall pinkish appearance is caused by the finer branches of these vessels. Filling the bottom third of the exposure is the temporal lobe; above the prominent, horizontally running veins are the parietal lobe, to the left, and frontal lobe, to the right. At the extreme left we see part of the occipital lobe. This operation, for the treatment of a particular type of epilepsy, consists of removing diseased brain, which is only permissible if it does not result in impairment of voluntary movement or loss of speech. To avoid this, the neurosurgeon identifies speech, motor, and sensory areas by electrical stimulation, looking for movements, sensations related precisely to different parts of the body, or interference with speech. Such tests would obviously not be possible if the patient were not conscious. Points that have been stimulated have been labeled by the tiny numbered sterile patches of paper. For example, stimulation of these regions gave the following results: (1) tingling sensation in the left thumb; (2) tingling in the left ring finger; (3) tingling in the left middle and ring finger; (4) flexion of left fingers and wrist. The regions labeled 8 and 13 gave more complex memory-like sensations typically produced on stimulation of the temporal lobe in certain types of epileptic patients. The cerebral cortex, which almost entirely covers the cerebral hemispheres, has the general form of a plate whose thickness is about 2 millimeters and whose surface area in humans is over 1 square foot. The total area of the macaque monkey's cortex is much less, probably about one- tenth that of the human. We have known for over a century that this plate is subdivided into a patchwork of many different cortical areas; of these, the primary visual cortex was the first to be distinguished from the rest by its layered or striped appearance in cross section-- hence its classical name, striate cortex. At one time the entire careers of neuroanatomists consisted of separating off large numbers of cortical areas on the basis of sometimes subtle histological distinctions, and in one popular numbering system the striate cortex was assigned the number 17. According to one of the more recent estimates by David Van Essen of Caltech, the macaque monkey primary visual cortex occupies 1200 square millimeters--a little less than one-third the area of a credit card. This represents about 15 percent of the total cortical area in the macaque, certainly a substantial fraction of the entire cortex.